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Next Gen: what is not going to change

• Digital Data will continue to
• grow exponentially

• require active protection

• outgrow read speed of archival storage media

• consume a lot of power

• be stored in byte streams

• be hard to move or convert
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Next Gen: what is going to change

• Data access will rely on
• data structure

• Parsing overhead of unstructured data unaffordable

• Examples: Apache Avro, Binary XML, ProtocolBuffers, 
Multimedia, ...

• temporal structure
• Applications do have utilization needs and deadlines: 

specify them!

• well-known data models
• Allows automatic access optimization

• Minimizes data movement (due to shared model)

• automatic access optimization
• Allows declarative querying, updates

• User won’t want to re-invent optimization for each application
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The POSIX I/O Bottleneck

• POSIX IO dominates 
File system interface

• POSIX IO does not scale

• 50 years ago: 100MB

• Now: 100PB (x 1 billion)

• Performance price of 
POSIX IO is high

• Workload- & system-
specific interposition 
layers (e.g. PLFS): almost 
1,000 x speed-up

• Common Workaround

• Middleware tries to 
make up for limitations

• Still uses POSIX!
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Application

Middleware

NetCDF, HDF5, ...

Byte Stream Interface

Parallel File System

Heavy! Do not move!

POSIX IO
interface
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DAMASC: DAta MAnagement in Scientific Computing

• Enhance parallel file 
system with data 
services
• Declarative querying

• Views

• Automatic content 
indexing

• Provenance tracking

• Index, not ingest!

• In situ processing on 
storage nodes
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Application

Simplified Middleware

Byte Stream Interface

Declarative Interface

DAMASC
interface

Logical Data Model Views

NetCDF, HDF5, ...

Parallel File System

Heavy! Do not move!

Extended 
POSIX IO

[PDSW 2009]
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DAMASC: SciHadoop [SC11]

• All access via scientific access library (e.g. 
NetCDF)

• Task manager partitions logical space

• instantiates mappers and reducers for logical 
partition 

• places mappers and reducers based on logical 
relationships

• Benefits of structure-awareness 

• reduces data transfers

• reduces remote reads

• reduces unnecessary reads
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Scientific File Formats

7

Byte Stream

Array-based Data Access Library

Logical Data Model

Distributed File System

• High-level logical data 
model (e.g. arrays)

• Translates logical view 
to physical locations

• All data access must pass 
through the access 
library

• Library hides data location
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Query Language

• Details in SC11 paper

• Functions applied to arrays

• What is the maximum value in some array?

• Simple language exposes data requirements

8
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SciHadoop Partitioning and Placement

expressed at the abstraction level of the logical, scientific
data model do not always correspond to contiguous, low-
level byte extents at the physical level. Thus, the di�culty
of processing scientific data with MapReduce is manifested
as a scalability limitation, and arises, as we will explore later
in detail, from a disconnect between the logical view of data,
and the physical layout of that data within a byte stream.

For example, consider a file format that serializes matrices
onto a linear byte stream using row-major ordering (i.e. each
row is physically stored one after the other). As the row size
of a matrix becomes larger, cells that are near one another
in the logical matrix but in separate rows (e.g. elements
in a column) will become separated by a greater distance
within the byte stream. Thus, a logical partitioning of an
input file that ignores the corresponding physical layout may
incur many remote reads when processed because the data
values referenced by a partition may be located in more than
one physical blocks. As the volume and frequency of remote
reads increase, contention for network resources can be a
limiting factor, and this limitation is a direct result of the
unfortunate partitioning of a computation’s input.

In general, the logical data view exposes no information
about the physical layout and distribution of data. This
disconnect is a road block for many types of optimizations
that rely on resources defined at the physical level, such
as caching and reducing duplicate reads, in addition to the
remote read problem described in the previous paragraph.
Our system, SciHadoop, addresses these issues by taking
into account the physical location and layout of data during
the logical partitioning of a computation’s input, allowing
for a variety of optimizations for common types of data
analysis operations.

Our work makes the following technical contributions.

1. We identify performance limitations of a straightfor-
ward application of MapReduce to analyzing array-
based scientific data. Our analysis employs an alge-
braic query language that allows us to reason about
the deficiencies of such an straightforward approach in
a principled fashion (Section 3).

2. To address the shortcomings of the straightforward ap-
proach we extend scientific file-format libraries to ex-
pose physical locality information and use this infor-
mation to create a more performant solution to pro-
cessing array-based scientific data with MapReduce
(Section 4.2).

3. We propose three optimization techniques that take
advantage of the semantics of scientific data queries
in order to further reduce the cost of analysis: two
optimizations for holistic aggregate functions, and one
general optimization that eliminates traditional block
scans in MapReduce.

4. We conduct and present a thorough experimental study
of our solution using representative data and queries
(Section 5 and Section 6).

2. MAPREDUCE AND SCIENTIFIC DATA

2.1 MapReduce
Since its introduction in 2004, MapReduce[4] has emerged

as a go-to programming model for large-scale, data-intensive

processing. The framework is popular because it allows
computations to be easily expressed, o↵ers built-in fault-
tolerance, and is scalable to thousands of nodes [12].
Computations in MapReduce are expressed by defining

two functions: map and reduce. Conceptually, a set of con-
currently executing map tasks read, filter and group a set
of partitioned input data. Next, the output of each map
task is re-partitioned, and each new partition is routed to a
single reduce task for final processing. Optionally, a ”com-
biner function” can be utilized as a type of pre-reduce step,
greatly reducing the data output at each map task location
before it is transferred to the reducer. A full explanation
of MapReduce is beyond the scope of this paper and we re-
fer the reader to [4] for additional details. Next we present
the data model assumed by MapReduce and details of the
representative system environment that we target.

2.1.1 MapReduce Data Model and Storage

A data model specifies the structure of data and the set
of operations available to access that data. MapReduce as-
sumes a byte stream data model (i.e. the same format which
most common file systems support today) and a set of oper-
ations similar to standard POSIX file operations. Generally,
MapReduce is deployed on top of a distributed file system,
and map and reduce tasks run on the same nodes that also
host the file system. Files are composed of fixed-size blocks
(byte extents) that are replicated and distributed among
the nodes. Formally, a file is composed of a set of m blocks,
B = {b0, b1, . . . , bm�1}, where each block bi is associated
with a set of hosts, Hi, which store a copy of bi locally.
The data contained in a block bi are accessible indirectly
through the file system interface, either remotely via a net-
work connection, or locally on a host h 2 Hi. Additionally,
the MapReduce framework assumes that the underlying file
system is capable of exposing the set of hosts, Hi, for any
block bi.

INPUT
(Logical)

Partition

PlacementPhysical
Layout

Execution
Plan

Mapper0   Reducer0
Mapper1   Reducer1

       ...                ...

L

1. Partitioning

2. Placement

Figure 1: MapReduce processes logical partitions in map
tasks and matches each map task with physical locations to
form an execution plan. The line labeled L is a contribu-
tion of SciHadoop which utilizes physical layout knowledge
during partitioning (see Section 4).

2.1.2 Partitioning and Placement

MapReduce scales in part because of its ability to intel-
ligently coordinate the execution of map and reduce tasks.
At a high-level this coordination consists of two phases, each
illustrated in Figure 1. The first phase is concerned with the
decomposition of the input into units of parallelization and
defines a partitioning strategy that dictates how a compu-
tation’s logical input is decomposed to be read by a set of
map tasks. In the second phase a placement policy controls
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Naïve Partitioning
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SciHadoop reduces data transfers

• Example: holistic functions (e.g. median)biner and Holistic-aware Partitioning. The first optimiza-
tion opportunistically evaluates holistic aggregate functions
in combiners when it can be determined that an entire input
is available in a single map task input, and the second op-
timization is used to make adjustments to logical partitions
at scheduling time that increase the probability of holistic
function inputs falling into single partitions.

Reducing remote reads. As described in Section 2.1
remote reads can be reduced by scheduling map tasks to
process data blocks on nodes that store those blocks locally.
However, Section 3 demonstrates that it is di�cult to make
scheduling decisions at the logical level of a scientific data
model because they physical data layout is hidden. Sci-
Hadoop implements two techniques for reducing the volume
of remote reads where simple round-robin scheduling heuris-
tics would perform poorly.

The first optimization, physical-to-logical translation, gen-
erates logical partitions that reference exactly the data con-
tained within a single block. While this optimization mini-
mizes remote reads, the technique may not always be feasible
to implement, and thus a more general method is needed.
The second optimization, chunking and grouping, decom-
poses a logical space into a set of small chunks and groups
the chunks according tho their primary position within the
byte stream achieving increased locality of reference over
simpler round-robin assignment.

Reducing unnecessary reads. Typical MapReduce
computations that process unstructured data, such as log-
processing, must scan blocks on disk and filter out unneces-
sary data in memory. However, the highly structured nature
of scientific data enables SciHadoop to avoid block scans by
constructing requests at the logical level that contain exactly
the data necessary to complete a query. The technique, re-
ferred to simply as NoScan, prunes input partitions to elimi-
nate unnecessary segments of the logical space, reducing the
total amount of data read during query execution.

4.1 Reducing Data Transfers
A holistic aggregate function has the property that it can-

not be computed by combining multiple, partial results. For
example, consider the task of calculating the median value
from the range 0 . . . 4 using MapReduce. Figure 6a shows the
execution flow of this query. Since neither of the two parti-
tions shown contain the entire range of 0 . . . 4, each partition
must be sent to the reduce function for evaluation. Here we
introduce two techniques to help reduce remote data transfer
for holistic function evaluation that use semantics exposed
by the logical data model and query language.

Holistic Combiner. In SciHadoop partial aggregate val-
ues for non-holistic functions are computed, when possible,
during the map phase using a combiner. However, holistic
functions must be processed entirely by a reducer because
the input to a holistic function may be present in multiple
partitions. SciHadoop opportunistically evaluates holistic
functions during the combine phase when the entire input
to the holistic function is present in one or more partitions
being evaluated on a single node. In this way the Holistic
Combiner optimization extends the data reduction benefits
of using a combiner to holistic functions when possible.

Holistic-aware Partitioning. While the holistic com-
biner can evaluate a holistic function when the entire input is
contained in the partitions on a single node, the initial par-
titioning of the logical input space is entirely unaware of the

40 51 32 6

Filter / Map / 
Combine

Filter / Map / 
Combine

Reduce

2

Entire Partitions Shuffled

(a)

40 51 32 6

Filter / Map / 
Combine

2

Reduce

2

(b)

Figure 6: Sub-figure (a) shows two entire partitions being
sent to a reduce task to evaluate a holistic function over an
input that spans partitions. Sub-figure (b) shows a reparti-
tioning that allows the holistic function to be applied during
the map/combine phase.

query being processed, and thus the ability for the combiner
to provide a benefit is probabilistic. To account for small
misalignments that prevent the combiner from being used
for holistic function queries, SciHadoop makes small adjust-
ments to partitions to increase the likelihood that holistic
functions can be evaluated using the holistic combiner opti-
mization. Figure 6b shows how the first partition is adjusted
to include the entire holistic function input.

4.2 Reducing Remote Reads
In this section we introduce two low-level techniques for

producing partitions that reduce remote reads. One tech-
nique, physical-to-logical translation, produces optimal par-
titions that reference exactly the data contained in a physical
block, but may not always be feasible to implement. The
second approach, referred to as chunking and grouping, is
a more general technique that trades-o↵ partition optimal-
ity for ease-of-use. Both techniques are query-independent,
and focus soley on logical partition creation that exhibits
increased physical locality.
Physical-to-Logical Translation. This technique di-

rectly translates the extent represented by a physical block
into its equivalent logical representation. Figure 7a illus-
trates how optimal partitions are created. At the top of the
figure a process is shown that uses file metadata to generate
a logical representation of the data contained in a physical
block. Since each block is directly converted into its logical
representation partitions are precisely aligned with physical
block boundaries. Therefore placement is trivial: a partition
is matched with the block from which it was generated.
Despite the precision of this technique, it can be di�cult

to implement for complex file formats. Therefore we in-
troduce a more general purpose techinque for constructing
partitions.
Chunking and Grouping. The second technique Sci-

Hadoop can use to reduce remote reads is referred to as
chunking and grouping. This technique decomposes the in-
put into many fixed-size units called chunks from which a
random sampling of byte stream locations is taken using
extensions to scientific access libraries. The sampling tech-
nique allows SciHadoop to then group chunks into flexibly
defined partitions with increased locality of reference.
Figure 7b illustrates how chunking and grouping are used
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SciHadoop reduces remote reads

• Physical-to-logical translation (modified library)
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Figure 7: (a) Direct physical-to-logical translation (Section 4.2). (b) Chunking and grouping (Section 4.2). (c) The NoScan
optimization (Section 4.3.)

to create partitions. At the top of the figure fixed-size chunks
are grouped together into partitions such that each partition
references primarily data within the same physical block.
This optimization requires extensions to file format libraries
to allow chunks to be associated with regions of the byte
stream, providing the ability to group based on data locality.
Next we describe chunking and grouping in more detail.

Chunking. The first step is the decomposition of in-
put at the logical level into a set of chunks (i.e. fixed-size,
contiguous, non-overlapping sub-arrays). The set of chunks
that cover the entire input space is given by K, where each
chunk k 2 K is determined by a chunking strategy.

There are trade-o↵s in choosing a chunking strategy. For
example, a small chunk size provides a finer granularity at
which partitions can be created, but results in more overhead
in managing many small chunks. A detailed discussion of
chunking strategy is beyond the scope of this paper, but we
provide the parameters for our experiments in Section 6.

Grouping. Grouping is the process by which chunks in
the set K are combined to form input partitions. The goal
of grouping is to form partitions that reference data located
in the fewest number of physical blocks. Thus, the prob-
lem of creating input partitions is equivalent to grouping
chunks k 2 K by block, such that each group maximizes
the amount of data referenced in the block that the group
is associated with. The resulting partitions are what we re-
fer to as the logical-to-physical mapping, defined by the set
LTP = {(b0, P0), (b1, P1), . . . , (bm, Pm)} , which associates
with a physical block bi, a logical partition Pi composed of
one or more chunks.

Sampling. The construction of LTP is based on the
examination of a randomly sampled set of cells taken from
a chunk. First, a set of n cells is selected from the logical
space represented by a chunk k using a uniform random
distribution. Next, each cell in the sample is translated into
its associated physical location on the byte stream using a
special function, getO↵set(cell), introduced as a SciHadoop
extension to scientific libraries. The return value of getO↵set
is the byte stream o↵set of the cell’s logical coordinate.

Finally, a histogram is constructed that gives the fre-
quency of sampled points for a chunk that fall into a given
block. The block bi with the highest frequency is chosen
and the chunk being considered is added to the partition Pi

associated with that block.

Sampling is the dominate cost of chunking and grouping.
For example, in our evaluation section we use a sampling ra-
tio of 0.0001 on a file containing 35 billion logical coordinates
resulting in the sampling operation being performed approx-
imately 3.5 million times. Microbenchmarks show that our
implementation of sampling for netCDF-3 files can achieve
600,000 samples per second.
Next we present a concrete example of the functioning of

this technique using the query Q1 from Section 2.2.

4.2.1 Example

First we consider the set of chunks K, consisting of the 6,
3⇥ 2 sub-arrays, shown at the top of Figure 7b. We refer to
these chunks by their position in the figure (i.e. 1 . . . 6).
Next, for each chunk k 2 K we perform a random sam-

pling. For chunks 1, 2, 4, 5, and 6, it is clear that any
random sampling will definitively associate the chunk with
a given block because each chunk references data contained
within exactly one block. However, a sampling of chunk 3
may result in sample points that fall in either block N1 or
block N2. Thus no matter the location at which chunk 3
is processed, remote data access will be required. Uniform
random sampling is an e↵ective way to minimize the amount
of remote reads for 3 by choosing a block with a majority of
the data. The result of chunking and sampling is shown as
the partitions illustrated at the bottom of Figure 7b. The
final LTP mapping is given as:

LTP (block1) ! {chunk1, chunk2, chunk3}
LTP (block2) ! {chunk4, chunk5}
LTP (block3) ! {chunk6}

The resulting LTP mapping can now be utilized by MapRe-
duce to schedule the processing of partitions on the nodes
associated with each block in order to reduce the amount of
remote reads resulting from query execution.

4.3 Reducing Unnecessary Reads
We now present an optimization referred to as NoScan

that reduces the amount of unnecessary reads to a given
partition. The key motivation is that the construction of
LTP does not consider a given query’s data requirements.
That is, LTP represents a partitioning of an entire file, even
when a query may require only a subset of the total input. A
placement using LTP alone will thus read entire partitions
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SciHadoop reduces remote reads

• Grouping chunks by sampling (unmodified lib)
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Figure 7: (a) Direct physical-to-logical translation (Section 4.2). (b) Chunking and grouping (Section 4.2). (c) The NoScan
optimization (Section 4.3.)

to create partitions. At the top of the figure fixed-size chunks
are grouped together into partitions such that each partition
references primarily data within the same physical block.
This optimization requires extensions to file format libraries
to allow chunks to be associated with regions of the byte
stream, providing the ability to group based on data locality.
Next we describe chunking and grouping in more detail.

Chunking. The first step is the decomposition of in-
put at the logical level into a set of chunks (i.e. fixed-size,
contiguous, non-overlapping sub-arrays). The set of chunks
that cover the entire input space is given by K, where each
chunk k 2 K is determined by a chunking strategy.

There are trade-o↵s in choosing a chunking strategy. For
example, a small chunk size provides a finer granularity at
which partitions can be created, but results in more overhead
in managing many small chunks. A detailed discussion of
chunking strategy is beyond the scope of this paper, but we
provide the parameters for our experiments in Section 6.

Grouping. Grouping is the process by which chunks in
the set K are combined to form input partitions. The goal
of grouping is to form partitions that reference data located
in the fewest number of physical blocks. Thus, the prob-
lem of creating input partitions is equivalent to grouping
chunks k 2 K by block, such that each group maximizes
the amount of data referenced in the block that the group
is associated with. The resulting partitions are what we re-
fer to as the logical-to-physical mapping, defined by the set
LTP = {(b0, P0), (b1, P1), . . . , (bm, Pm)} , which associates
with a physical block bi, a logical partition Pi composed of
one or more chunks.

Sampling. The construction of LTP is based on the
examination of a randomly sampled set of cells taken from
a chunk. First, a set of n cells is selected from the logical
space represented by a chunk k using a uniform random
distribution. Next, each cell in the sample is translated into
its associated physical location on the byte stream using a
special function, getO↵set(cell), introduced as a SciHadoop
extension to scientific libraries. The return value of getO↵set
is the byte stream o↵set of the cell’s logical coordinate.

Finally, a histogram is constructed that gives the fre-
quency of sampled points for a chunk that fall into a given
block. The block bi with the highest frequency is chosen
and the chunk being considered is added to the partition Pi

associated with that block.

Sampling is the dominate cost of chunking and grouping.
For example, in our evaluation section we use a sampling ra-
tio of 0.0001 on a file containing 35 billion logical coordinates
resulting in the sampling operation being performed approx-
imately 3.5 million times. Microbenchmarks show that our
implementation of sampling for netCDF-3 files can achieve
600,000 samples per second.
Next we present a concrete example of the functioning of

this technique using the query Q1 from Section 2.2.

4.2.1 Example

First we consider the set of chunks K, consisting of the 6,
3⇥ 2 sub-arrays, shown at the top of Figure 7b. We refer to
these chunks by their position in the figure (i.e. 1 . . . 6).
Next, for each chunk k 2 K we perform a random sam-

pling. For chunks 1, 2, 4, 5, and 6, it is clear that any
random sampling will definitively associate the chunk with
a given block because each chunk references data contained
within exactly one block. However, a sampling of chunk 3
may result in sample points that fall in either block N1 or
block N2. Thus no matter the location at which chunk 3
is processed, remote data access will be required. Uniform
random sampling is an e↵ective way to minimize the amount
of remote reads for 3 by choosing a block with a majority of
the data. The result of chunking and sampling is shown as
the partitions illustrated at the bottom of Figure 7b. The
final LTP mapping is given as:

LTP (block1) ! {chunk1, chunk2, chunk3}
LTP (block2) ! {chunk4, chunk5}
LTP (block3) ! {chunk6}

The resulting LTP mapping can now be utilized by MapRe-
duce to schedule the processing of partitions on the nodes
associated with each block in order to reduce the amount of
remote reads resulting from query execution.

4.3 Reducing Unnecessary Reads
We now present an optimization referred to as NoScan

that reduces the amount of unnecessary reads to a given
partition. The key motivation is that the construction of
LTP does not consider a given query’s data requirements.
That is, LTP represents a partitioning of an entire file, even
when a query may require only a subset of the total input. A
placement using LTP alone will thus read entire partitions

Tuesday, August 9, 11



SciHadoop reduces unnecessary reads

• Example: only access query’s data requirements
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Figure 7: (a) Direct physical-to-logical translation (Section 4.2). (b) Chunking and grouping (Section 4.2). (c) The NoScan
optimization (Section 4.3.)

to create partitions. At the top of the figure fixed-size chunks
are grouped together into partitions such that each partition
references primarily data within the same physical block.
This optimization requires extensions to file format libraries
to allow chunks to be associated with regions of the byte
stream, providing the ability to group based on data locality.
Next we describe chunking and grouping in more detail.

Chunking. The first step is the decomposition of in-
put at the logical level into a set of chunks (i.e. fixed-size,
contiguous, non-overlapping sub-arrays). The set of chunks
that cover the entire input space is given by K, where each
chunk k 2 K is determined by a chunking strategy.

There are trade-o↵s in choosing a chunking strategy. For
example, a small chunk size provides a finer granularity at
which partitions can be created, but results in more overhead
in managing many small chunks. A detailed discussion of
chunking strategy is beyond the scope of this paper, but we
provide the parameters for our experiments in Section 6.

Grouping. Grouping is the process by which chunks in
the set K are combined to form input partitions. The goal
of grouping is to form partitions that reference data located
in the fewest number of physical blocks. Thus, the prob-
lem of creating input partitions is equivalent to grouping
chunks k 2 K by block, such that each group maximizes
the amount of data referenced in the block that the group
is associated with. The resulting partitions are what we re-
fer to as the logical-to-physical mapping, defined by the set
LTP = {(b0, P0), (b1, P1), . . . , (bm, Pm)} , which associates
with a physical block bi, a logical partition Pi composed of
one or more chunks.

Sampling. The construction of LTP is based on the
examination of a randomly sampled set of cells taken from
a chunk. First, a set of n cells is selected from the logical
space represented by a chunk k using a uniform random
distribution. Next, each cell in the sample is translated into
its associated physical location on the byte stream using a
special function, getO↵set(cell), introduced as a SciHadoop
extension to scientific libraries. The return value of getO↵set
is the byte stream o↵set of the cell’s logical coordinate.

Finally, a histogram is constructed that gives the fre-
quency of sampled points for a chunk that fall into a given
block. The block bi with the highest frequency is chosen
and the chunk being considered is added to the partition Pi

associated with that block.

Sampling is the dominate cost of chunking and grouping.
For example, in our evaluation section we use a sampling ra-
tio of 0.0001 on a file containing 35 billion logical coordinates
resulting in the sampling operation being performed approx-
imately 3.5 million times. Microbenchmarks show that our
implementation of sampling for netCDF-3 files can achieve
600,000 samples per second.
Next we present a concrete example of the functioning of

this technique using the query Q1 from Section 2.2.

4.2.1 Example

First we consider the set of chunks K, consisting of the 6,
3⇥ 2 sub-arrays, shown at the top of Figure 7b. We refer to
these chunks by their position in the figure (i.e. 1 . . . 6).
Next, for each chunk k 2 K we perform a random sam-

pling. For chunks 1, 2, 4, 5, and 6, it is clear that any
random sampling will definitively associate the chunk with
a given block because each chunk references data contained
within exactly one block. However, a sampling of chunk 3
may result in sample points that fall in either block N1 or
block N2. Thus no matter the location at which chunk 3
is processed, remote data access will be required. Uniform
random sampling is an e↵ective way to minimize the amount
of remote reads for 3 by choosing a block with a majority of
the data. The result of chunking and sampling is shown as
the partitions illustrated at the bottom of Figure 7b. The
final LTP mapping is given as:

LTP (block1) ! {chunk1, chunk2, chunk3}
LTP (block2) ! {chunk4, chunk5}
LTP (block3) ! {chunk6}

The resulting LTP mapping can now be utilized by MapRe-
duce to schedule the processing of partitions on the nodes
associated with each block in order to reduce the amount of
remote reads resulting from query execution.

4.3 Reducing Unnecessary Reads
We now present an optimization referred to as NoScan

that reduces the amount of unnecessary reads to a given
partition. The key motivation is that the construction of
LTP does not consider a given query’s data requirements.
That is, LTP represents a partitioning of an entire file, even
when a query may require only a subset of the total input. A
placement using LTP alone will thus read entire partitions
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SciHadoop: Performance results

apply(median, pressure,
    CS = (
        corner = (547, 0, 0 ,0)
        shape = (4380, 360, 360, 50),
    ),
    SE = (2, 36, 36, 10),
)

regrid(average, pressure,
    CS = (
        corner = (547, 0, 0 ,0)
        shape = (4380, 360, 360, 50),
    ),
    SE = (7, 2, 1, 1),
)

(a)

apply(median, pressure,
    CS = (
        corner = (547, 0, 0 ,0)
        shape = (4380, 360, 360, 50),
    ),
    SE = (2, 36, 36, 10),
)

regrid(average, pressure,
    CS = (
        corner = (547, 0, 0 ,0)
        shape = (4380, 360, 360, 50),
    ),
    SE = (7, 2, 1, 1),
)

(b)

Figure 8: Function declaration for (a) Query 1 and (b)
Query 2

Test Name Local Temp CPU Run Time
Read Data Util Time �
(%) (GB) (%) (Min) (%)

First 4 use no Holistic Combiner
baseline 9.3 2,586 34.7 159 14
baseline +NoScan 9.2 2,588 34.3 132 3
ChkGroup 80 2,608 24.3 188 10
PhysToLog 88 2,588 29.9 201 3

Next 4 use Holistic Combiner with baseline
baseline 9.5 107 79.1 28 2
NoScan 9.5 107 80.7 27 3
+NoScan +HaPart 8.8 107 81.3 26 1
+HaPart 8.6 107 79.3 26 0.7
Next 3 use Holistic Combiner with Local-Read Optimizations
ChkGroup +HaPart 70.7 116 84.7 25 0.4
+NoScan
ChkGroup +NoScan 79.3 188 83.1 26 1
PhysToLog +NoScan 88.1 196 82.8 27 2

Table 1: Overview of Query 1 The runtimes of tests
without the Holistic Combiner optimization are dominated
by writes to temporary storage. All other runs are bound
by CPU (with iowait times < 1%). All numbers are aver-
ages from 7 executions. Abbreviations: ChkGroup: Chunk-
ing & Grouping, PhysToLog : Physical-to-Logical, HaPart :
Holistic-aware Partitioning.

Query 2. The regrid operation is a common operation
in scientific data that is used to alter coordinate system of
a data set. For example, the units of a data set may be
changed so that it is directly comparable to another data set
(e.g. polar to Cartesian). We use the following regrid oper-
ation, “Regrid the pressure variable along time and latitude
dimensions using units weeks and full degrees, respectively.
Interpolate using average”, Figure 8b.

6.2 Results

An overview of results from running Query 1 is given in
Table 1. We discuss these in terms of our optimization goals.

Reducing Data Volume. The Holistic Combiner and
Holistic-aware Partitioning have a significant impact on run-
time: roughly an order of magnitude. As Table 1 shows,
tests using the Holistic Combiner optimization are largely
CPU-bound while others are not, implying that those tests
are waiting on IO. We were admittedly surprised by the ex-
tent of the performance impact until we realized that data
traversing the system is transferred over the network but,
more importantly, potentially written to disk repeatedly.

A large volume of data causes a significant increase in
temporary storage writes due to bu↵er spills and external
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Figure 9: Bytes shu✏ed in tests with Holistic Combiner
(note the y-axis log scale). Baseline resulted in an incidental
alignment that provided significant transfer reductions.

sorting, which can occur at each step of a MapReduce com-
putation. In our setup a single disk is used to store tem-
porary data (HDFS stripes data over 3 SATA drives). This
can lead to an IO bottleneck for temporary data. In the
case of Query 1, successfully applying the combiner at the
map node rather than at the reducer results in a reduc-
tion of 25,920 data values, and their associated meta-data,
to a single value. This dramatic reduction in data results
in a commensurate reduction in intermediate data written,
shown in the right-most column of Table 1, and translates
into significant reductions in query execution time.
Figure 9 shows the number of bytes transferred between

map and reduce tasks. Generally, the tests that use Holistic-
aware Partitioning are able to reduce data transfer by almost
three orders of magnitude compared to Holistic Combiner
tests without Holistic-aware partitioning. The exceptions
to this are the baseline and the baseline with NoScan tests
which show a similar amount of data transferred to the base-
line tests with Holistic-aware partitioning. Log data taken
during our experiments reveals that this is the result of an in-
cidental alignment between the shape of the data, the query
shape, and the Hadoop configuration used on our cluster.
Reducing Remote Reads. A potential conflict exists

between partitioning strategies that reduce remote reads and
partitioning strategies that reduce data transfers: the for-
mer partitions along physical data location while the lat-
ter partitions according to complete input ranges of holistic
queries. Consider the last two Chunking & Grouping tests of
which one of them uses Holistic-aware partitioning (see Ta-
ble 1). Given that our experimental setup is never limited
by HDFS reads and these two tests are CPU-bound dur-
ing most of their runtime, sacrificing local reads (8.5% lower
local read fraction) in favor of increasing combiner e�cacy
(62% less temporary storage writes) results in one minute
shorter runtime (4% speedup).
As can be seen in Table 1, the Chunking & Grouping par-

titioning strategy dramatically improves the read locality for
map processes, with experiments going from 9% local reads
to 80% local. The Physical-to-Logical method achieves even
better data locality, achieving close to 90% local reads. Re-
call that all our tests are using the default Hadoop scheduler,
which will give tasks to non-local nodes rather than let them
sit idle, so 100% local reads is infeasible.
Reducing Unnecessary Reads. The NoScan method

reduces the total amount of data read, based on the query
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SciHadoop: Summary

• Map/Reduce data processing on scientific data 
using standard access libraries (here NetCDF3) 
and Hadoop

• Declarative query interface for Map/Reduce 
programs

• Powerful optimizations enabled by access to 
both logical and physical structure of data
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More hierarchical? Presentation to user?

• Hierarchies and files are here to stay
• Required for grouping data

• Enhanced by search on attributes & relations

• Multiple views, multiple data models:
• Hierarchical view for data groups and files

• Relational view for catalog data

• Array-based view for scientific data

• Graph-based view for networking data

• Full integration of all views and data models

• Declarative access languages
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Lessons from cloud storage?

• Services sell, capacity alone does not
• E.g. safety, security, transcoding, archiving, compliance, 

elasticity, ...

• Availability and speed sell
• Design around CAP Theorem

• Understand consistency requirements

• What you can’t meter, you can’t sell
• Price by SLOs, sell predictability

• Failures correlated (bursty) along failure domains

• Key/value stores: memcached, Cassandra, S3
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Record-based IO?

• Now: Record-based IO above middleware

• Future: Record-based IO at OSD interfaces
• Minimizes data movement

• Supports also page-based interface for bulk IO
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Crazy ideas

• Storage API: data objects in VTK Pipeline

• Scientific data curation as a game: why is 
Solitaire, essentially a sorting & assignment 
activity, so addictive?

• Jitter elimination by performance management. 
Then we can run everything everywhere.
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